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ABSTRACT 
In this paper we introduce a new indexing scheme for 
progressive traversal and visualization of large regular grids. We 
demonstrate the potential of our approach by providing a tool 
that displays at interactive rates planar slices of scalar field data 
with very modest computing resources. We obtain 
unprecedented results both in terms of absolute performance 
and, more importantly, in terms of scalability. On a laptop 
computer we provide real time interaction with a 20483 grid (8 
Giga-nodes) using only 20MB of memory. On an SGI Onyx we 
slice interactively an 81923 grid (½ tera-nodes) using only 60MB 
of memory. The scheme relies simply on the determination of an 
appropriate reordering of the rectilinear grid data and a 
progressive construction of the output slice. The reordering 
minimizes the amount of I/O performed during the out-of-core 
computation. The progressive and asynchronous computation of 
the output provides flexible quality/speed tradeoffs and a time-
critical and interruptible user interface. 

1. INTRODUCTION 
The real time processing of very large volumetric meshes 
introduces specific algorithmic challenges due to the 
impossibility of fitting the input data in the main memory of a 
computer. The basic assumption (RAM computational model) of 
uniform-constant-time access to each memory location is not 
valid because part of the data is stored out-of-core or in external 
memory. The performance of most algorithms does not scale 
well in the transition from the in-core to the out-of-core 
processing conditions. The performance degradation is due to 
the high frequency of I/O operations that may start dominating 
the overall running time. 
Out-of-core computing [29] addresses specifically the issues of 
algorithm redesign and data layout restructuring to enable data 
access patterns with minimal performance degradation in out-of-
core processing. Results in this area are also valuable in parallel 
and distributed computing where one has to deal with the similar 
issue of balancing processing time with data migration time. 
In this paper we introduce a new storage layout for rectilinear 

grids of data that minimizes the amount of disk access necessary 
during a progressive traversal. The layout is coupled with a 
simple mapping of the 3D index (i, j, k) of an element in the grid 
to its 1D index I on disk. This new mapping improves on the 
approach introduced in [25] by using a conceptual 2n tree 
decomposition instead of a binary tree. 
The scheme has three key features that make it particularly 
attractive. First the order of the data is independent of the out-of-
core blocking factor so that its use in different settings (e.g. local 
disk access or network transmission) does not require large data 
reorganization. Secondly the conversion from the standard Z-
order indexing to the new index can be implemented with a 
simple sequence of bit-string manipulations making it appealing 
for possible hardware implementations. Third, there is no data 
replication. This is especially desirable when the data is 
accessed through slow connections and avoids performance 
degradation when the data is dynamically modified. 
We use this approach to optimize progressive visualization 
algorithms where the input grid is traversed like a hierarchical 
structure (from the coarse level to the fine level) while 
displaying a continuously improved image of the output. In this 
paper we focus our attention to the case of progressive 
computation of planar slices with general orientation. The 
scheme achieves interactive performance for progressive slicing 
of extremely large datasets using moderate resources. On a 
laptop computer we provide real time interaction with a grid of 
20483 using only 20MB of cache memory. Until recently real 
time navigation with this dataset [21] was only possible on a 
large multiprocessor systems, limiting interaction to the 
computation of orthogonal slices and requiring the duplication 
of the data for each slicing direction. With the new approach, 
data replication is not necessary and on the same multiprocessor 
system we can slice interactively at any orientation a dataset of 
81923 resolution (½ tera-nodes grid) using only 60MB of cache 
memory and four threads. 

2. PREVIOUS WORK 
Interest in external memory algorithms [29], also known as out-
of-core algorithms, has been increasing in recent years in the 
computer science community since they address systematically 
the problem of non-uniform memory structure of modern 
computers (fast cache, main memory, hard disk, etc). This issue 
is particularly important when dealing with large data-structures 
that do not fit in the main memory of a single computer since the 
access time to each memory unit is dependent on its location. 
New algorithmic techniques and analysis tools have been 
developed to address this problem for example in the case of 
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ure 1: (a-e) The first five levels of resolution of the 2D Lebesgue’s space filling curve. (f-j) The first five levels of resolution of 
 3D Lebesgue’s space filling curve. 
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etric algorithms [1][2][13][20] or scientific visualization 
0]. Closely related issues emerge in the area of parallel and 
buted computing where remote data transfer can become 
rimary bottleneck in the computation. In this context space 
 curves are often used as a tool to determine very quickly 

distribution layouts that guarantee good geometric locality 
22][24]. Space filling curves [27] have been also used in a 

variety of applications [3] both because of their 
rchical fractal structure as well as for their spatial locality 
rties. The most popular is the Hilbert curve [15], which 
ntees the best geometric locality properties [23]. The 
o-Hilbert scanning order [7][8][16] generalizes the scheme 
tilinear grids that have different number of samples along 

coordinate axis. 
tly Lawder [17][18] explored the use of different kinds of 

 filling curves to develop indexing schemes for data 
e layout and fast retrieval in multi-dimensional databases. 

elli at al. [5][6] use the Z-order space filling curve to 
ate efficiently a quad-tree data-structure without using 
ers. They use simple, closed formulas for computing 
boring relations and nearest common ancestors between 
 to allow fast generation of adaptive edge-bisection 
ulations. They improve on the basic data-structure already 
for terrain visualization [11][19] or adaptive mesh 

ment [26]. The use of the Z-order space filling curve for 
sal of quadtrees [28] (also called Morton-order) and has 
also proven useful in the speedup of matrix operations 
ing them to make better use of the memory cache 
rchies [9][12][29]. 
 approach proposed here a new data layout is used to allow 
ent progressive access to volumetric information stored in 
al memory. This is achieved by combining interleaved 
e of the levels in the data hierarchy while maintaining 
etric proximity within each level of resolution. One main 
tage is that the resulting data layout is independent of the 
ular adaptive traversal of the data. Moreover the same data 
t can be used with different blocking factors making it 
icial throughout the entire memory hierarchy. 
(a) (b)

(c) (d)

coarse data new level data
 

Figure 2: The sequence of Z-order space filling curves
used to define a hierarchical sub-sampling stricture over
a 2D rectilinear grid. At each refinement of the Z curve
the green vertices represent the coarse data, while the
red vertices represent the finer resolution information.
Samples are stored in the order of the curve traversal,
with only the new level data stored for each level of the
hierarchy. 
3. GENERAL FRAMEWORK 
This section discusses a general framework for the definition of 
hierarchical indexing schemes yielding efficient external 
memory processing performance. The simplest realization of 
this scheme is based on mere sub-sampling the input data. For 
example we will show in the following sections how the 
Lebesgue space-filling curve of Figure 1a-e can be used as in 
Figure 2 to define a hierarchical sub-sampling of a rectilinear 
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grid. More sophisticated schemes can be realized within this 
framework but will not discussed further here. 
Consider a set S of n elements decomposed into a hierarchy H of 
k levels of resolution H = {S0, S1, …, Sk-1} such that: 

S0 ⊂ S1 ⊂ … ⊂ Sk-1 = S 

where Si is said to be coarser than Sj iff i < j. The order of the 
elements in S is defined by the cardinality function I : S → {0 … 
n-1}. This means that the following identity always holds: 

S[I(s)] ≡ s 

where the square brackets are used to index an element in a set. 

We can define a derived sequence H′ of sets S′i as follows: 

S′i = Si \ Si -1     i = 0, … , k-1 

Where formally S-1 = ∅. The sequence H′ = { S′0, S′1, …, S′k-1} 
is a partitioning of S. A derived cardinality function I′ : S → {0 
… n-1} can be defined on the basis of the following properties: 

∀s, t ∈ S′i : I′(s) < I′(t) ⇔ I(s) < I(t); 

∀s ∈ S′i, ∀t ∈ S′j : i < j ⇒ I′(s) < I′(t). 

If the original function I has strong locality properties when 
restricted to any level of resolution Si then the cardinality 
function I′ generates the desired global index for hierarchical 
and out-of-core traversal. 
The construction of the function can be achieved in the 
following manner: (i) determine the number of elements in each 
derived set S′i and (ii) determine a cardinality function I″i = I′ | 
S′j restriction of I′ to each set S′j. In particular if ci is the number 
of elements of S′i one can predetermine the starting index of the 
elements in a given level of resolution by building the sequence 
of constants C0, … , Ck-1 with 

 ∑
−

=

=
1

0

i

j
ji cC   (1) 

Secondly one needs to determine a set of local cardinality 
functions I″i : S′j → {0 … ci -1} so that 

 ∀s ∈ S′i : I′(s) = Ci + I″i (s) (2) 

The computation of the constants Ci can be performed in a pre-
processing stage so that the computation of I′ is reduced to the 
following two steps: 

(1) Given s, determine its level of resolution i (that is the 
i such that S ∈ S′i); 

(2) Compute I″i (s) and add it to Ci 

These two steps need to be performed very efficiently because 
they are going to be executed repeatedly at run time. The 
following section reports a practical realization of this scheme 
for rectilinear cube grids in any dimension. 

4. 2n TREE AND THE LEBESQUE CURVE 
Here we detail the derivation from the Z-order space filling 
curve the local cardinality functions I″i for a binary tree 
hierarchy in any dimension. 

4.1 Indexing the Lebesgue Curve 
The Lebesgue space filling curve, also called Z-order space 
filling curve for its shape in the 2D case, is depicted in Figure 1. 
In the 2D case the curve can be defined inductively by a base Z 
shape of size 1 (Figure 1a) whose vertices are replaced each by a 
Z shape of size ½. The vertices obtained are then replaced by Z 
shapes of size ¼  (Figure 1c) and so on. In general the ith level of 
resolution is defined as the curve obtained by replacing the 
vertices of the (i – 1) th level of resolution with Z shapes of size 
(1/2i). The 3D version of this space filling curve has the same 
hierarchical structure with the only difference that the basic Z 
shape is replaced by a connected pair of Z shapes lying on the 
opposite faces of a cube as shown in f. Figure 1f-j shows five 
successive refinements of the 3D Lebesgue space filling curve. 
The d-dimensional version of the space filling curve has also the 
same hierarchical structure where the basic shape (the Z of the 
2D case) is defined as a connected pair of (d – 1)-dimensional 
basic shapes lying on the opposite faces of a d-dimensional 
cube. 
The property that makes the Lebesgue’s space filling curve 
particularly attractive is the easy conversion from the d indices 
of d-dimensional matrix to the 1D index along the curve. If one 
element e has d-dimensional reference (i1, …, id) its 1D 
reference is built by interleaving the bits of the binary 
representations of the indices i1, …, in. In particular if ij is 
represented by the string of h bits “b1

j b2
j … bh

j” with j = 1, …, 
d) then the 1D reference of e is represented the string of hd bits I 
= “b1

1 b1
2 … b1

d b2
1 b2

2 … b2
d … bh

1 bh
2 … bh

d”. Figure 3 
illustrates this interleaving scheme in the 3D case. 

4.2 Index Remapping 
The cardinality function discussed in Section 3 for the case of a 
quad-tree yields the index remapping shown in Table 1 for the 
first three levels. 
The structure of the 2l - tree defined on the Z-order space filling 
curve allows to determine easily the three elements that are 
necessary for the computation of the cardinality which are: (i) 
the level i of an element, (ii) the constants Ci of equation (1) and 
(iii) the local indices I″i. Following the notation of Section 3 we 
have: 

i - if the 2l-tree hierarchy has k levels then the element of Z-
order index j belongs to the level k - h where h is the 
number of trailing zeros in the binary representation of j 
divided by l: 

i = k - h 

k

I

i j  
Figure 3: Construction of the 1D index for the Lebesgue’s Z-
order space filling curve. In the 3D case the original index is a
set of three bit-strings (i,j,k). The 1D index I is formed by
interleaving the bits of i,j and k  into a single bit-string. 
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Ci - the number of elements in the levels coarser than I, with i 
> 0, is 

Ci = 2l(i-1) 

with C0 = 0. 

I″i  - if an element has index j and belongs to the set S″i then 
j/2li has one of its last l bits different from 0. The local 
index is then: 

I″i (j) = j/2li - j/2l(i+1) -1 

The computation of the local index I″i can be explained easily 
by looking at the bottom right part of Table 1 where the 
sequence on indices (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15) needs 
to be remapped to the local index (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11). Note how each original sequence of three consecutive 
numbers needs to be decreased by the same amount. From the 
sequence (1,2,3) one has to subtract 1 to get (0, 1, 2). From (5, 6, 
7) one has to subtract 2 to get (3, 4, 5) and so on. In general the 
subtrahend is 1 plus the index divided by four.  

The computation of the final index I′(s) = Ci + I″i(s) is then 

per
term
righ
don
obt
of 
Fig
mat
tha
into

larger) corresponds to data that is distributed increasingly locally 
on the 2D matrix. 

5. PROGRESSIVE SLICING 
To demonstrate the utility of this indexing scheme, an 
implementation of the indexing scheme for the computation and 
display of arbitrary slices based on standard operating system 
I/O primitives was developed for Unix and Windows. The data 
access model consists of a fixed size memory cache and a 
compressed disk file format with associated meta-data. A planar 
slice through the dataset is realized as a set of point samples on 
at 2D grid orientated with arbitrary attitude in the data volume. 
1

IAdd a high bit set to 1

0 0 0x xxLoop: while

0 0 0 x x x 0 0 0

0 0 00 0 1

zeros inserted ~

~

~

~

+

Perform the following arithmetic operationTEP3

TEP2

TEP1

= shift right 3 bits with incoming bits set to 0

igure 4: Diagram of the algorithm for index remapping
r blocks that scale with a factor of 8 (three bits). 
6 

formed with the algorithm shown in Figure 4. Note how the 
 sum Ci + I″i(s) is computed directly by shifting I(s) to the 
t and adding the complement of its high bits. This can be 
e because Ci = 2l(i-1) and hence Ci  - j/2l(i+1) - 1 can be 
ained directly by complementing the rightmost l(k - i - 1) bits 
j/2l(i+1). 
ure 5 illustrates the data layout when the elements of a 2D 
rix are reordered following the index I′. The general pattern 

t emerges is that the decomposition of the 1D array of data 
 a sequence of blocks of the same size (the first is slightly 
 

Level 0 Level 1 Level 2

B0 B1 B5 B9 B13 B17

B2 B6 B10 B14 B18

B3 B7 B11 B15 B19

B4 B8 B12 B16 B20

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17

Figure 5: Data layout obtained for a 2D matrix. The 1D
array at the top of the diagram represents the disk
distribution of the data. Each of the consecutive blocks in
the 1D array corresponds to data of progressively finer
resolution in the 2D matrix, distributed in an increasingly
Table 1: Structure of the hierarchical indexing scheme for a quad-tree combined with the order defined by the Lebesgue space 
filling curve. 

Level 0 1   2            
Z-order index (1 level ) 0                
Z-order index (2 levels) 0 1 2 3             
Z-order index (3 levels) 0 4 8 12 1 2 3 5 6 7 9 10 11 13 14 15 
Hierarchical index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
The input to the I/O layer is this set of points and their 
associated level (resolution) in the index hierarchy. Individual 
sample points are converted into a data index using the 
hierarchical Z order space-filling curve. This index is converted 
to a virtual block number and a local index within the block by 
simple division. The block number is queried in the cache. If the 
block is in the cache, the sample for the point is accessed and 
returned, otherwise, an asynchronous I/O operation for that 
block is added to an I/O queue and the point marked as pending. 
Point processing continues until all points have been resolved 
(including pending points) or the system has exceeded a 
predetermined processing time limit. The block cache is filled 
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asynchronously by I/O threads, which read compressed blocks 
from disk, decompress them into the cache, and resolve any 
sample points pending on that cache operation.  
An interface thread determines the orientation and position of 
the current slice plane and sends planar requests to the I/O layer. 
As data values return from the I/O layer the interface thread fills 
in the output texture while the plane is being displayed 
asynchronously. This simple mechanism produces instant coarse 
resolution and progressive improvement of the slice image (see 
Figure 6). 
The current implementation does not include speculative 
prefetching of the data or other mechanisms that pipeline the 
cost of the I/O performed with the exception of threaded block 
decompression. The timings in the charts include both the 
complete disk access time and data decompression time for each 
frame. In this way we are able to evaluate of the total amount of 
resources used and perform fair comparisons among several 
alternative indexing schemes. The blocking factor for the data 
was selected arbitrarily to be 64KB and compression was 
provided by zlib. Further improvement of the interactivity may 
be achieved utilizing a more efficient data compression methods 
and data-prefetching. 
We compare the performance of the same progressive slicing 
scheme for four different data layouts: (Array) storage of the 
data as a standard row major array, (brick blocking) 
decomposition of the data in cubes of size equal to the disk 
pages, (1-bit hierarchical Z-order) introduced in [25] and (3-bit 
hierarchical Z order) introduced in the previous section. In the 
graphs the rotation tests report average timings for rotating 
slices over each primary axis, while the translation tests report 
the average time for translating orthographic slices along each 
axis. The dataset is one timestep of the PPM dataset [21] shown 

 

 
   

    
(sampling rate=1/32) (sampling rate=1/16) (sampling rate=1/8) (sampling rate=1/4) 

Figure 6: Progressive refinement of two slices of one timestep of the 2048x2048x1920 dataset from [21]. The images in the left 
column are rendered at the coarsest resolution using one sample every thirtytwo along each axis of the input grid. Each row 
shows the progressive sequence of textures obtained for each slice by increasing the sampling rate up to 1/4. Note how the detail 
is increased with the sampling rate. (top row) Slice perpendicular to the z axis. (bottom row) Slice at an arbitrary orientation. 
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Figure 7: Average 5122 slice computation times for a 20483

grid on a Linux laptop (500Mhz Pentium III, 20MB memory
cache). (top) Slicing times obtained averaging the slice
computation time over a sequence of parallel slices. (bottom)
Slicing times obtained averaging the slice computation time
over a sequence of slices rotate around a common axis. 
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in Figure 6. The timestep is a 2048x2048x1920 array of 8bit 
intensity values. Note that the timings are reported in 
logarithmic scale. Generally our new 3-bit hierarchical Z-order 
outperforms all other schemes. The 3-bit hierarchical Z order 
can be twice as fast as the 1-bit hierarchical Z order and orders 
of magnitude faster than the array and brick decomposition 
schemes. 
Figure 7 shows the timings obtained on a Linux laptop for 
progressive slicing of the 2048x2048x1920 grid. The amount of 
cache memory used to achieve this result is only of 20MB. 
Figure 8 shows the timing obtained on an SGI Onyx2 for 
progressive slicing of an artificial 81923 dataset obtained by 
replicating 64 times (4x4x4) one timestep of the PPM dataset. 
60MB of RAM and four threads were used in generating this 
result. The scheme appears to scale very well with the size of the 
input grid as witnessed by the relatively modest increase in 
computational resources necessary to scale to a dataset 64 times 
larger. More problematic is the scaling with the size of the 
output texture. The results presented in the previous graphs are 
based on output textures of 5122 resolution. This resolution 
many not be sufficient for newer high-pixel count displays.  

Figure 9 shows the timing for an output texture of 20482 
resolution, which may be more appropriate for such displays. 
Performance begins to decline as the higher output resolution 
exposes inefficiencies in our caching and queuing 

implementations. For example, a much larger memory cache is 
necessary to avoid trashing as the output matrix size increases. 
Fortunately only a moderate amount processing power is used 
by the scheme, so that we can use object space parallelism to 
improve performance. In particular we can maintain the same 
level of interactivity shown in Figure 8 by dividing the texture in 
16 tiles of 5122 resolution and use them to compose a high 
resolution output texture at real time rates. It may also be 
possible to improve the performance of the serial 
implementation by enhancing our cache implementation. The 
need for increased cache memory may be minimized by 
traversing the 2D grid along a space filling curve as well. 
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Figure 8: Average 5122 slice computation times for a 20483

grid on an SGI Onyx (300Mhz R12000, 60MB memory
cache). (top) Slicing times obtained averaging the slice
computation time over a sequence of parallel slices. (bottom)
Slicing times obtained averaging the slice computation time
over a sequence of slices rotate around a common axis. 
6. CONCLUSIONS 
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igure 9: Average 20482 slice computation times for a 81923

rid on an SGI Onyx (300Mhz R12000, 60MB memory
ache). (top) Slicing times obtained averaging the slice
omputation time over a sequence of parallel slices. (bottom)
licing times obtained averaging the slice computation time
ver a sequence of slices rotate around a common axis. 
This paper introduces a new indexing and data layout scheme 
that is useful for out-of-core hierarchical traversal of large 
datasets. Practical tests for the case of progressive slicing of 
rectilinear grids demonstrate the performance improvements that 
can be achieved with this approach. For example we can 
translate and rotate planar slices of an 81923 grid achieving real-
time interaction rates. In the near future this scheme will be used 
as the basis for out-of-core volume visualization, computation of 
isocontours and navigation of large terrains. 
Future directions being considered include the combination with 
wavelet compression schemes, the extension to general 
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rectangular grids, distributed memory implementations and 
application to non-rectilinear hierarchies. 
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